Skip to main content

Indian Spectacled Cobra (Naja naja)

  • Chapter
  • First Online:
The 'Big Four’ Snakes of India
  • 310 Accesses

Abstract

The Indian cobra (Naja naja), which is popularly known as the Asian cobra, is also called the spectacled cobra because of its hood mark. It inhabits the Indian subcontinent but is also found in the northeastern parts of the country. The Indian cobra has received much respect and attention in Indian mythology. The bite of this species of snake requires immediate medical attention. Another species of Indian cobra (known as the Indian monocled cobra or N. kaouthia), found in eastern and northeastern parts of the country, is also a deadly venomous snake, though antivenom against this species is not produced commercially. Indian cobras can grow 1–1.5 m in length and show great variation in color. The Indian cobra has proteroglyph dentition: the two hollow, short front fangs are fixed to the top jaw at the front of the mouth. The Indian cobra is oviparous, laying between 10 and 40 eggs. The biochemical analysis of the composition of Indian cobra venom shows that it is mainly comprised of nonenzymatic toxins, especially three-finger toxins, and it also contains enzymatic toxins of variable composition depending on the zoogeographic origin of the cobras. Recently, the relative proportion of different toxins in Indian cobra venom from different regions of the country has been deciphered by proteomic analysis and the variation in clinical manifestation post-cobra bite has also been demonstrated. The species-specific differences in venom composition between N. naja and N. kaouthia, based on biochemical and proteomic analyses, are also described in detail in this chapter. Because of the variations in venom composition, venom samples from these two closely related Indian cobra species also have different pharmacological properties and toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, S. A., Yang, D. C., Jackson, T. N., Undheim, E. A., Koludarov, I., Wood, K., Jones, A., Hodgson, W. C., McCarthy, S., Ruder, T., & Fry, B. G. (2013). Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). Journal of Proteomics, 89, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Babu, A. S., Puri, K. D., & Gowda, T. V. (1995). Primary structure of a cytotoxin-like basic protein from Naja naja naja (Indian cobra) venom. International Journal of Peptide and Protein Research, 46(1), 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Basavarajappa, B. S., & Gowda, T. V. (1992). Comparative characterization of two toxic phospholipases A2 from Indian cobra (Naja naja naja) venom. Toxicon, 30(10), 1227–1238.

    Article  CAS  PubMed  Google Scholar 

  • Bawaskar, H. S., Bawaskar, P. H., Punde, D. P., Inamdar, M. K., Dongare, R. B., & Bhoite, R. R. (2008). Profile of snakebite envenoming in rural Maharashtra, India. The Journal of the Association of Physicians of India, 56, 88–95.

    CAS  PubMed  Google Scholar 

  • Bhat, M. K., & Gowda, T. V. (1989). Purification and characterization of a myotoxic phospholipase A2 from Indian cobra (Naja naja naja) venom. Toxicon, 27(8), 861–873.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, M. K., & Gowda, T. V. (1991). Isolation and characterization of a lethal phospholipase A2 (NN-IVb1-PLA2) from the Indian cobra (Naja naja naja) venom. Biochemistry International, 25(6), 1023–1034.

    CAS  PubMed  Google Scholar 

  • Bhat, M. K., Prasad, B. N., & Gowda, T. V. (1991). Purification and characterization of a neurotoxic phospholipase A2 from Indian cobra (Naja naja naja) venom. Toxicon, 29, 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  • Bieber, A. (1979). Metal and nonprotein constituents in snake venoms. In C. Y. Lee (Ed.), Snake venoms (pp. 295–306). Springer.

    Google Scholar 

  • Bogert, C. M. (1943). Dentitional phenomena in cobras and other elapids, with notes on adaptive modifications of fangs. Bulletin of the American Museum of Natural History, 81, 3.

    Google Scholar 

  • Britt, A., & Burkhart, K. (1997). Naja naja cobra bite. The American Journal of Emergency Medicine, 15(5), 529–531.

    Article  CAS  PubMed  Google Scholar 

  • Chaim-Matyas, A., Borkow, G., & Ovadia, M. (1995). Synergism between cytotoxin P4 from the snake venom of Naja nigricollis nigricollis and various phospholipases. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 110(1), 83–89.

    Article  Google Scholar 

  • Chanda, A., Kalita, B., Patra, A., Sandani, W. D., Senevirathne, T., & Mukherjee, A. K. (2018a). Proteomic analysis and antivenomics study of Western India Naja naja venom: Correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Review of Proteomics, 16(2), 171–184.

    Article  PubMed  CAS  Google Scholar 

  • Chanda, A., Patra, A., Kalita, B., & Mukherjee, A. K. (2018b). Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: Correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Review of Proteomics, 15(11), 949–961.

    Article  CAS  PubMed  Google Scholar 

  • Chanda, A., & Mukherjee, A. K. (2020a). Mass spectrometry analysis to unravel the venom proteome composition of Indian snakes: Opening new avenues in clinical research. Expert Review of Proteomics, 17(5), 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Chanda, A., & Mukherjee, A. K. (2020b). Quantitative proteomics to reveal the composition of Southern India spectacled cobra (Naja naja) venom and its immunological cross-reactivity towards commercial antivenom. International Journal of Biological Macromolecules, 160, 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Charles, A. K., Gangal, S. V., & Joshi, A. P. (1981). Biochemical characterization of a toxin from Indian cobra (Naja naja naja) venom. Toxicon, 19, 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, M., McCleary, R. J., Kesherwani, M., Kini, R. M., & Velmurugan, D. (2017). Comparison of proteomic profiles of the venoms of two of the ‘Big Four’ snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins. Toxicon, 135, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Das, T., Bhattacharya, S., Halder, B., Biswas, A., Das, G., Gomes, S., A., & Gomes, A. (2011). Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian Naja naja venom on Ehrlich ascites carcinoma in BALB/c mice. Toxicon, 57, 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  • Dass, B., Bhatia, R., & Singh, H. (1998). Venomous snakes in India and management of snakebite. In B. D. Sharma (Ed.), Snakes in India: A source book (pp. 257–268). Asiatic Publishing house.

    Google Scholar 

  • Deufel, A., & Cundall, D. (2006). Functional plasticity of the venom delivery system in snakes with a focus on the poststrike prey release behavior. Zoologischer Anzeiger – A Journal of Comparative Zoology, 245(3–4), 249–267.

    Article  Google Scholar 

  • Devi, A. (1968). The protein and nonprotein constituents of snake venoms. In Venomous animals and their venoms (pp. 119–165). Elsevier.

    Google Scholar 

  • Doley, R., & Mukherjee, A. K. (2003). Purification and characterization of an anticoagulant phospholipase A2 from Indian monocled cobra (Naja kaouthia) venom. Toxicon, 41, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Doley, R., King, G. F., & Mukherje, A. K. (2004). Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II), from Indian monocled cobra Naja kaouthia venom. Archives of Biochemistry and Biophysics, 425, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Dufton, M. J., & Hider, R. C. (1988). Structure and pharmacology of elapid cytotoxins. Pharmacology & Therapeutics, 36, 1–40.

    Article  CAS  Google Scholar 

  • Dutta, S., Gogoi, D., & Mukherjee, A. K. (2015). Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: Inhibition of anticoagulant activity by low molecular weight heparin. Biochimie, 110, 93–106.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, S., Chanda, A., Kalita, B., Islam, T., Patra, A., & Mukherjee, A. K. (2017). Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. Journal of Proteomics, 156, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, S., Archana Sinha, A., Dasgupta, S., & Mukherjee, A. K. (2019). Binding of a Naja naja venom acidic phospholipase A2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. Biochimica et Biophysica Acta – Biomembranes, 1861, 958–977.

    Article  CAS  PubMed  Google Scholar 

  • Endo, T., & Tamiya, N. (1987). Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacology & Therapeutics, 34(3), 403–451.

    Article  CAS  Google Scholar 

  • Fry, B. G., Wuster, W., Kini, R. M., Brusic, V., Khan, A., Venkataraman, D., & Rooney, A. P. (2003). Molecular evolution and phylogeny of elapid snake venom three-finger toxins. Journal of Molecular Evolution, 57(1), 110–129.

    Article  CAS  PubMed  Google Scholar 

  • Girish, K.S.,Mohanakumari, H.P., Nagaraju, S, . Vishwanath, B.S., K. Kemparaju, (2004a) Hyaluronidase and protease activities from Indian snake venoms: Neutralization by Mimosa pudica root extract. Fitoterapia 75, 378–380.

    Article  CAS  PubMed  Google Scholar 

  • Girish, K. S., Shashidharamurthy, R., Nagaraju, S., Gowda, T. V., & Kemparaju, K. (2004b). Isolation and characterization of hyaluronidase a “spreading factor” from Indian cobra (Naja naja) venom. Biochimie, 86(3), 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Gorai, B., & Sivaraman, T. (2017). Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations. International Journal of Biological Macromolecules, 95, 1022–1036.

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesha, D. K., Shashidharamurthy, R., Girish, K. S., & Kemparaju, K. (2002). A non-toxic anticoagulant metalloprotease: Purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon, 40, 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi, G. P., & Gowda, T. V. (1983). Purification of acidic phospholipases from Indian cobra (Naja naja naja) venom. Journal of Chromatography, 281, 393–396.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, B., & Mukherjee, A. K. (2019). Recent advances in snake venom proteomics research in India: A new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. Journal of Proteins and Proteomics, 10, 149–164.

    Article  Google Scholar 

  • Kaneda, N., Takechi, M., Sasaki, T., & Hayashi, K. (1984). Amino acid sequence of cytotoxin IIa isolated from the venom of the Indian cobra (Naja naja). Biochemistry International, 9, 603–610.

    CAS  PubMed  Google Scholar 

  • Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon, 56, 855–867.

    Article  CAS  PubMed  Google Scholar 

  • Kochva, E. (1987). The origin of snakes and evolution of the venom apparatus. Toxicon, 25, 65–106.

    Article  CAS  PubMed  Google Scholar 

  • Koh, D., Armugam, A., & Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences, 63(24), 3030–3041.

    Article  CAS  PubMed  Google Scholar 

  • Kularatne, S. A., Budagoda, B. D., Gawarammana, I. B., & Kularatne, W. K. (2009). Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: First authenticated case series. Transactions of the Royal Society of Tropical Medicine and Hygiene, 103(9), 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Kulkeaw, K., Chaicumpa, W., Sakolvaree, Y., Tongtawe, P., & Tapchaisri, P. (2007). Proteome and immunome of the venom of the Thai cobra, Naja kaouthia. Toxicon, 49, 1026–1041.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. S., Girish, K. S., Vishwanath, B. S., & Kemparaju, K. (2011). The metalloprotease, NN-PF3 from Naja naja venom inhibits platelet aggregation primarily by affecting α2β1 integrin. Annals of Hematology, 90(5), 569–577.

    Article  CAS  PubMed  Google Scholar 

  • Laustsen, A. H. (2016). Toxin synergism in snake venoms. Toxin Reviews, 35(3–4), 165–170.

    Article  CAS  Google Scholar 

  • Linnaeus, C. (1758). Systema naturae per regna tria naturae: Secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis (in Latin) (10th ed.). Laurentius Salvius.

    Google Scholar 

  • Machiah, D. K., & Gowda, T. V. (2006). Purification of a post-synaptic neurotoxic phospholipase A2 from Naja naja venom and its inhibition by a glycoprotein from Withania somnifera. Biochimie, 88(6), 701–710.

    Article  CAS  PubMed  Google Scholar 

  • McCleary, R. J. R., & Kini, R. M. (2013). Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon, 62, 56–74.

    Article  CAS  PubMed  Google Scholar 

  • Mebs, D. (1985). List of biologically active components from snake venoms. University of Frankfurt.

    Google Scholar 

  • Meier, J., & Stocker, K. F. (1995). Biology and distribution of venomous snakes of medical importance and the composition of snake venoms. In J. White (Ed.), Handbook of clinical toxicology of animal venoms and poisons (pp. 367–412). CRC Press.

    Google Scholar 

  • Mukherjee, A. K. (1998). In: Some biochemical properties of cobra and Russell’s viper venom and their some biological effects on albino rats. Burdwan University, Burdwan.

    Google Scholar 

  • Mukherjee, A. K. (2008). Phospholipase A2-interacting weak neurotoxins from venom of monocled cobra Naja kaouthia display cell specific cytotoxicity. Toxicon, 51, 1538–1543.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A. K. (2010). Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. Journal of Venom Research, 1, 37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee, A. K. (2020). Species-specific and geographical variation in venom composition of two major cobras in Indian subcontinent: Impact on polyvalent antivenom therapy. Toxicon, 188, 150–158.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A. K., & Maity, C. R. (1998). Composition of Naja naja venom sample from three district of West Bengal, Eastern India. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119, 621–627.

    Article  CAS  Google Scholar 

  • Mukherjee, A. K., & Maity, C. R. (2002). Biochemical composition, lethality and pathophysiology of venom from two cobras--Naja naja and N. kaouthia. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 131, 125–132.

    Article  CAS  Google Scholar 

  • Mukherjee, A. K., Kalita, B., & Thakur, R. (2014). Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism. PLoS One, 9(8), e101334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee, A. K., Kalita, B., Dutta, S., Patra, A., Maity, C. R., & Punde, D. (2021). Snake envenomation: Therapy and challenges in India. In S. P. Mackessy (Ed.), Section V: Global approaches to envenomation and treatments, handbook of venoms and toxins of reptiles (2nd ed.). CRC Press.

    Google Scholar 

  • Nakai, K., Sasaki, T., & Hayashi, K. (1971). Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja). Biochemical and Biophysical Research Communications, 44, 893–897.

    Article  CAS  PubMed  Google Scholar 

  • Neema, K. N., Vivek, H. K., Kumar, J. R., Priya, B. S., & Nanduja Swamy, S. (2015). Purification and biochemical characterization of L-amino acid oxidase from western region Indian cobra (Naja naja) venom. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 167–171.

    CAS  Google Scholar 

  • Ohta, M., Sasaki, T., & Hayashi, K. (1976). The primary structure of toxin B from the venom of the Indian cobra Naja naja. FEBS Letters, 15, 161–166.

    Article  Google Scholar 

  • Ohta, M., Sasaki, T., & Hayashi, K. (1981a). The amino acid sequence of toxin D isolated from the venom of Indian cobra (Naja naja). Biochimica et Biophysica Acta (BBA) – Protein Structure, 671, 123–128.

    Article  CAS  Google Scholar 

  • Ohta, M., Sasaki, T., & Hayashi, K. (1981b). Primary structure of toxin C from the venom of the Indian cobra (Naja naja). Chemical & Pharmaceutical Bulletin, 29, 1458–1475.

    Article  CAS  Google Scholar 

  • Ponnappa, K. C., Saviour, P., Ramachandra, N. B., Kini, R. M., & Gowda, T. V. (2008). INN-toxin, a highly lethal peptide from the venom of Indian cobra (Naja naja) venom – Isolation, characterization and pharmacological actions. Peptides, 29(11), 1893–1900.

    Article  CAS  PubMed  Google Scholar 

  • Pung, Y. F., Wong, P. T. H., Kumar, P. P., Hodgson, W. C., & Kini, R. M. (2005). Ohanin, a novel protein from king cobra venom induces hypolocomotion and hyperalgesia in mice. The Journal of Biological Chemistry, 280, 13137–13147.

    Article  CAS  PubMed  Google Scholar 

  • Ranawaka, U. K., Lalloo, D. G., & de Silva, H. J. (2013). Neurotoxicity in snakebite—The limits of our knowledge. PLOS Neglected Tropical Diseases, 7(10), e2302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudrammaji, L. M., & Gowda, T. V. (1998). Isolation and characterization of an endogenous inhibitor of phospholipase A2 from Indian cobra (Naja naja naja) venom. Toxicon, 36(4), 639–644.

    Article  CAS  PubMed  Google Scholar 

  • Sachidananda, M. K., Murari, S. K., & Channe Gowda, D. (2007). Characterization of an antibacterial peptide from Indian cobra (Naja naja) venom. Journal of Venomous Animals and Toxins including Tropical Diseases, 13, 446–461.

    Article  CAS  Google Scholar 

  • Satish, S., Tejaswini, J., Krishnakantha, T. P., & Gowda, T. V. (2004). Purification of a class B1 platelet aggregation inhibitor phospholipase A2 from Indian cobra (Naja naja) venom. Biochimie, 86(3), 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Shafqat, J., Beg, O. U., Yin, S.-J., & Zaidi, Z. H. (1990). Primary structure and functional properties of cobra (Naja naja naja) venom Kunitz-type trypsin inhibitor. European Journal of Biochemistry, 194, 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Shafqat, J., Siddiqi, A. R., Zaidi, Z. H., & Jörnvall, H. (1991). Extensive multiplicity of the miscellaneous type of neurotoxins from the venom of the cobra Naja naja naja and structural characterization of major components. FEBS Letters, 284, 70–72.

    Article  CAS  PubMed  Google Scholar 

  • Shashidharamurthy, R., Jagadeesha, D. K., Girish, K. S., & Kemparaju, K. (2002). Variations in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution. Molecular and Cellular Biochemistry, 229(1–2), 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Shashidharamurthy, R., Mahadeswaraswamy, Y. H., Ragupathi, L., Vishwanath, B. S., & Kemparaju, K. (2010). Systemic pathological effects induced by cobra (Naja naja) venom from geographically distinct origins of Indian peninsula. Experimental and Toxicologic Pathology, 62(6), 587–592.

    Article  CAS  PubMed  Google Scholar 

  • Sintiprungrat, K., Watcharatanyatip, K., Senevirathne, W. D., Chaisuriya, P., Chokchaichamnankit, D., Srisomsap, C., & Ratanabanangkoon, K. A. (2016). Comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. Journal of Proteomics, 132, 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Sudarsan, S., & Dhananjaya, B. L. (2015). Antimicrobial activity of an acidic phospholipase A2 (NN-XIa-PLA2) from the venom of Naja naja naja (Indian cobra). Applied Biochemistry and Biotechnology, 176(7), 2027–2038.

    Article  CAS  Google Scholar 

  • Suryamohan, K., Krishnankutty, S. P., Guillory, J., et al. (2020). The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nature Genetics, 52, 106–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Matsubara, M., Athauda, S. B. P., Suzuki, Y., Matsubara, K., & Moriyama, A. (2016). Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, Naja naja. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 179, 158–164.

    CAS  Google Scholar 

  • Suzuki, M., Itoh, T., Anuruddhe, B. M., Bandaranayake, I. K., Shirani Ranasinghe, J. G., Athauda, S. B., & Moriyama, A. (2010). Molecular diversity in venom proteins of the Russell's viper (Daboia russelii russelii) and the Indian cobra (Naja naja) in Sri Lanka. Biomedical Research, 31, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Takechi, M., Tanaka, Y., & Hayashi, K. (1987). Amino acid sequence of a less-cytotoxic basic polypeptide (LCBP) isolated from the venom of the Indian cobra (Naja naja). Biochemistry International, 14, 145–152.

    CAS  PubMed  Google Scholar 

  • Thangam, R., Gunasekaran, P., Kaveri, K., Sridevi, G., Sundarraj, S., Paulpandi, M., & Kannan, S. (2012). A novel disintegrin protein from Naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro. Process Biochemistry, 47(8), 1243–1249.

    Article  CAS  Google Scholar 

  • Weinstein, S. A., Smith, T. L., & Kardong, K. V. (2009). Reptile venom glands form, function, and future. In Handbook of venoms and toxins of reptiles (pp. 65–91). CRC Press.

    Google Scholar 

  • Suvilesh, K. N., Yariswamy, M., Savitha, M. N., Joshi, V., Nanjaraj, U. A. N., Urs, A. P., Choudhury, M., Velmurugan, D., & Vishwanath, B. S. (2017). Purification and characterization of an anti-hemorrhagic protein from Naja naja (Indian cobra) venom. Toxicon, 140, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan, B. (2008). Snakebite: A book for India (pp. 1–93). The Chennai Snake Park Trust.

    Google Scholar 

  • Vogel, C. W., & Fritzinger, D. C. (2010). Cobra venom factor: Structure, function, and humanization for therapeutic complement depletion. Toxicon, 56, 1198–1222.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, C. W., Bredehorst, R., Fritzinger, D. C., Grunwald, T., Ziegelmuller, P., & Kock, M. A. (1996). Structure and function of cobra venom factor, the complement-activating protein in cobra venom. Advances in Experimental Medicine and Biology, 391, 97–114.

    Article  CAS  PubMed  Google Scholar 

  • Whitaker, R., Captain, A., & Ahmed, F. (2004). Snakes of India. Draco Books.

    Google Scholar 

  • Whitaker, R. (2006). Common Indian snakes: A field guide. Macmillan Indian Pvt. Ltd..

    Google Scholar 

  • Wong, K. Y., Tan, C. H., Tan, K. Y., Quraishi, N. H., & Tan, N. H. (2018). Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. Journal of Proteomics, 175, 156–173.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. (1981). Progress in the characterization of venoms and standardization of antivenoms W.H.O. WHO Offset Publication, 58, 1–44.

    Google Scholar 

  • Wüster, W. (1998). The cobras of the genus Naja in India. Hamadryad, 23(1), 15–32.

    Google Scholar 

  • Wüster, W., & Thorpe, R. S. (1989). Population affinities of the Asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biological Journal of the Linnean Society, 36, 391–409.

    Article  Google Scholar 

  • Wüster, W., & Thorpe, R. S. (1992). Dentitional phenomena in cobras revisited: Spitting and fang structure in the Asiatic species of Naja (Serpentes: Elapidae). Herpetologica, 48(4), 424–434.

    Google Scholar 

  • Zhang, Y., Wu, J., Yu, G., Chen, Z., Zhou, X., Zhu, S., Li, R., Zhang, Y., & Lu, Q. (2011). A novel natriuretic peptide from the cobra venom. Toxicon, 57(1), 134–140.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, A.K. (2021). Indian Spectacled Cobra (Naja naja). In: The 'Big Four’ Snakes of India. Springer, Singapore. https://doi.org/10.1007/978-981-16-2896-2_4

Download citation

Publish with us

Policies and ethics